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SUMMARY

This report is a continuation of RM-1399, Differential

Games II: The Definition and Formulation.

Its essential contents are: the differential equation

technique for solving differential games (at least "in

the small") and the Verification Theorem, a device which

enables one to prove that the answers obtained are the

correct solutions.
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DIFFERENTIAL GAMES Ill: THE BASIC PRINCIPLES

OF THE SOLUTION PROCESS

by

Rufus Iseacs

(This work is a continuation of RM--1391, which we will refer to

as II.)

1. The Nature of a Solution

When we analyse a differential game we shall be interested

in three goals: the optimal tactics of each player and the value

of the game. We shall say the game has a solution when all three

items exist; collectively they are the solution. We will have

solved the game when either we have found a solution or, in case

none exists, when we have become as enlightened as the situation

permits.

The term optimal tactics used above refers, as already dis-

cussed in II, to such 4(x) and V(x) as may appear in all K-strategies

which are E-strategies for all sufficiently small positive E. One

must bear in mind that the utility of K-strategies is for proofs;

for practical purposes we are concerned with the optimal C(x),

q(x) (henceforth denoted by f(x), ?(x)) themselves. We are not

far wrong if we conceive of them directly as optimal strategies

and in the future we will often sveak in such terms.

We recall that the data of a game include a particular

starting point in E and that we have used the term "game" rather

freely for what should be a family of games. When we speak of

the solution of a game for , certain subset F' of C, we will

refer to all games with starting points in •'.
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'he process of solving a game splits into two phases. It

generally turns out that t.c. region E is to be divided into a

number of parts separated by surfaces which we shall later call

singular suifaces. In each part the solution will be smooth;

that is, V will be of class C1 and the f and V will be continuous

functions of x. On the singular surfaces (or singular manifolds

of lower dimension) various kinds of special behaviour will take

place. fhere are a number of possibilities. fhe whole subject

of singular surfaces is difficult and sometimes their study is

the essence of the problem. They shall be dealt with later.

We shall use the term in the small to refer to the "smooth"

parts of the solution found between the singular surfaces. 'The

problem of identifying the singular surfaces and assemblying the

"smooth" parts into the total solution will be described by the

phrase in the large.

We shall see that the technique in the small is one of

differential equations. This phase of the problem plays a part

in full solution somewhat analogous to that played by the Euler

equations in the calculus of variations. In fact, for some one

person games the approaches become identical. There Is nothing

radically new in the concept of a singular surface. 'They appear

in some classical problems, but inconspicuously. Motives for em-

phasizing them appear only when we introduce the second player

* There may also be singular manifolds of dimension < n-l; such

of course cannot separate the components of E.

'I
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and look at matters game theoretically.

It is not possible to make a categorical statement as to

which of the phases is the more important. There are examples

where the solutiicns in the small are extremely simple (for

example, the paths may be straight lines traversed at constant

speed) while the assortment of singular surfaces is abundant

and involved. On the other hand, there may be few or no singular

surfaces, but we may encounter involved differential equations.

2. The Main Equation

We suppose that the value of a differential game exists. It

will depend on the starting point x and we denote it by V(x). We

shall show that V(x) satisfies a first order partial differential

equation, to be called the main equation, whenever V(x) is of

class C1 .

For games with integral payoff the main equation is

(1) min max f (xJ,$,) + G(x,*,4)3 - 0

and, for games with terminal payoff,

(2) mn max Z V xf (x,4,W) - 0

" Example 2 of. the following chapter will illustr~te this point.

** 'hat is, V has all its first partials and they are continuous.

SI
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4 From the minimax assumption, it makes no difference if the

min and max In (1) and (2) are reversed.

We shall give two proofs. The first will follow immediately.

It i frankly heuristic. But it is instructive. For example, it

is possible to solve differential games approximately by discrete

methods. The first proof will point the way.

We ut4lize what we have called the tenet of transition. The

germ cf the idea is that we are dealing with a family of games

based cn different starting points. Let us consider an interval

of time in midplay. At its commencement the path has reached

some definite point of •. We consider all possible x which may

be reached at the end of the interval for all possible navigational

S choices by both players. We suppose that, for each endpoint, the

game beginning there has already been solved; in other words, V

is knowm there. Then the payoff resulting from each choice 4 ,

durin_ the interval will be known and the navigation variables

are to be so chosen as to render it minimax. When we let the

duration of the intervwl approach zero, the result yields a dif-

ferential equation.

We couch the above reasoning formally. First let the payoff

be integral. Let V be known at x in • which has been reached in

a play at time L. A short time later - let us candidly label the

interim dt - the play has progressed to the (variable) point x'.

Then

(3) LP payoff at X - /tt`dt G(x,1,')dt + V(x')
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= (in t-hue lonouac cf primItive calculus*)

[G(x,4,,) + Z V Xf (x,4 ,'?)_dt + v(x)

The 4 and * 'n the las*t line are, of course, their values

at x. To minimax LP, they must be chosen to minimax the bracket.

(Their values will then be those of an optimal tactic at x. ) But

when this is done, che payoff will be the value; thus, to make

the equation balance, the bracket must be zero. We have (1).

kAen the payoff is terminal, almost the same reasoning

applies. In this case optimal play during the interval means that

V will be unchanged during it; we can suppress the integral in (3)

and proceed as before.

This proof instructs us as to a distinction between games with

the two kinds of payoff. Where the optimal path of x is differen--

tiable, along it

(4)-dV 'Z %, 'f (x,•, )

By examination of the bracket above we learn:

When the payoff is integral the paths of oltimal play

penetrate the surfaces on which V is constant; when it is

SThe reader speaking a more sophisticated tongue (mean value

theorems, etc.) can readily translate our idea into terms of

Sreater rigor.

** except, of course, when G is 0 during an interval
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S integral, die pawls l*•.a c.h.hout; Lhe play in the same sur-

face of constant V.

The second proof of the main equaticn depends on a new con-

cept.

5. Semipermeable Surfaces

We take it that each small portion olf the surfaces under

discussion separate the neighboring space. As orientation is

germane to our purpose, we distinguish the two directions in

which the surface may be penetrated. calling them the P- and

E-directions. The "side" of the surface reached after penetration

in the P-[E-] direction will be called the P-[E--] side. We take a

point x on a so oriented surface and visualize the full vectogram

at x. We will say the surface is semipermeable at x when the

following is true:

There is at least one value f of ý such that if • - no

vector in *-vectogram penetrates the surface in the E-direction.

Similarly, there is a which prevents penetration in P-direction.

A surface having `-his property at each point will be called

semipermeable.

Suppose the fi are all separable. Then we observe that if

f and # + f, there will be strict penetration in the P-direction.

It is this fact that causes, in the separable case, optimal

* f[t w1ll be used interchangeably to denote a value of 4[4'

with the described property or the set of all such values.

~ 11 I I I Ii
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strategies to be best strategies.

We have already seen that we can transform a game with

integral payoff into one with terminal payoff. Consider an in-

stance of the latter which we supposed solved, and for which V(x)

has at least two values.

Any surface which separates the parts of E where V > c and

V < c (c, any constant) must be semipermeable with V decreasing

as the surface is crossed in the P-direction. For if, at some

point x of the surface, there were no I, P could not prevent E

from pulling x into the side with the larger V. Similarly, there

isa 7 .

a ihe critical reader who demands more precise reasoning than

this will see in the next section how it may be supplied. There

the reasoning is based on K-strategies which we have accepted as

the sole thoroughly rational bulwark of the theory.

Now suppose in a certain subregion cf C, V is of class CI.

Mlen the surfaces on which V is constant will be semiperme.ble.

The vector grad V V is normal to such surfaces. Whether

a moving point penetrates the surface in one direction or the

other or not at all depends on the sign of its velocity component

along this vector. T1hat is, in the case where V is of class Cl,

the semipermeability condition for the surfaces of constant V is

min max Z Vx ifi(x,,4) - 0

But this is the main equation.
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Suppose we had begun with an integral payoff case and pe.t--

formed the transformation in II §3. We see that if we compare

the games emanating from two points which differ only in their

values of xn+l (let d be this difference) the games will be iien-

tical except that there is a difference d between pairs of corres-

ponding payoffs. Phus VXn+l = 1. Also fn+l - G. Putting these

values into (2), we obtain (i).

4. The Verificiation TIheorem

We do not purport to give an existence theorem for differential

games. Our interest lies in solving problems. In the sequel we

shall explain methods and exhibit examples. But what we do need

is a technique for showing that the results of our methods ac-

tually are solutions. Such is provided by the subject theorem.

It is actually no more than a sedulous application of the semi-

permeable surface concept of the last section. Its advantages

are, as the reader will later see, that It verifies our solution

methods almost automatically. In fact, it may be quite possible

to construct an existence theorem from the solution technique and

the present theorem for a properly delineated class of games.

Let ua suppose that we have found an alleged solution of a

certain game with terminal payoff. We suppose first that it is

a game of degree, reserving the other case for later. By this

we mean H is a continuous function on C. Let V(x) be the pur-

ported value. There may be a subdivision of & by singular sur-

faces. Experience ha3 shown that the only types of such surfaces

on which V falls to be differentiable are ones that are never
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crossed by the optImal paths. We will supposm this tc be the

case here and we shall either remove any such (alleged) singular

surfaces from F, or think of them as "slits" so that on the "cut"

we may expeAt ', Go be of ciass C1 . There may also be a part of

Elth the properLy that the alleged optimal paths beginning there

do not termLinate. If so, we remove it from g. What is left of

after both these kinds of surgery we will call L'. Generally it

fulfills the hypothesis of the

Verfication Theorem. If V(x) is of class C1 in F', if it

satisfies(2) and equals H on 0, then V(x) is the value of the

game, provided the assumptions made in passing from 9 to 6' are

correct. The optimal tactics consist for those classes of func-

tions of x such at each position they provide the min and max in

(2).

Proof: We can, as we have seen in II, without changing the

nature of the game, arrange that all velocity vectors in each

full vectogram have at most unit length. We do so.

Let us select a tactic f(x) for P such that for each x,

is minimizlng in (2). We let E play any K-etrategy; let 4(x) be

its tactic. Play starts from x°. Given an E > 0, we are going

to complete P's K-strategy by constructing a *Y We shall speak

as if P were to play Indefinitely; of course, we need but curtail

our schcme whien C is reached.

* Example 5 of II is an instance. Although there are infinitely

many singular surfaces, V = -xI.

i
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Divide time into intervals I m(m < t < m + 1, m 0, 1, I .. ). InmI
1 M x cannot be further than m + 1 from the starting position x°.

We can take it, that for x so bounded, each V and f is uniformly

continuous in x, the uniformity holding for all 4, 4. T'he same is

true of Z Vxjf Q(x, From the bound on speed, we can

complete at by subdividing Im into I such that, during each, the

change in Q < E Th e Ip may be further subdivided into Impq

by the t' of a'. In each I 4 and ' are constant (a. and 4'p)t mpq MP mpq

and so dV* = Q. Let x' be the position at the start of I and xMP

be a point reached during Im. Thenmpq*

IQ(x, ýmp, mpq)- '(x, ýmp, tmpq)l < 2 &

and, as 4mp satisfies (2) at the start of Imp,

max Q(x', ýmp, ) 0 o"

we have

3 during Impq Q(x, ýmp impq)

As this inequality holds through Is, the gain there of V <

and so the total gain < £. But when C is reached, V - H - payoff

and so the latter < V(x0 ) + E.

Likewise we can construct a a' for E insuring a payoff > V(x°) --
t

Thus V(x°) is the value.

Above we have tacitly assumed the game will terminate. Whether this

is true is a question of a game cf degree. Suppose that the answer

assures us of termination; it generally happens that it is occasioned

by the optimal tactics.

forward time derivative
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* D Now let us consider the singular surfaces slashed from & in

the construction of F'. If no velocity f(x,f,7) leads x onto such

a surface from sufficiently proximate points.then the assumption

of the surface being uncro.;ssed during optimal play is corroborated.

Suppose beside3 a part 6", in which it was alleged that

optimal play did not terminate, was removed from &. It may be

that neither player can invoke termination from I". in that event,

•" might well have been discarded at the outset; it has hardly a

legitimate claim to belong to E in the first place. More usual -

this being a game whose essence is conflict - one player will

strive for termination; the other will oppose it. The boundary

between 6' and I" will be semipermeable; the details fit into a

* discussion of this subject still to come.

We now turn to games of kind. We already know that our ob-

jective here ia to divide f into discrete parts corresponding to

the discrete payoffs. We can generally consider F" as one of

these parts. This is certainly true if we decree a stop rule

(see II, section 3); the case where we don't will be treated in

a subsequent chapter.

The salient point is that the boundaries of this subdivision

are appropriately oriented semipermeable surfaces.

Verification Theorem (Games of Kind). If semipermeable our-

faces with continuously turning tangent hyperplanes exist in E such

that they meet 0 at the loci where H changes values and they are

correctly oriented (that is, the P-side corresponds to a payoff

,.! ! ! ! ! !! !!! !!! ! ! I ril I II II r l l l I'I II l llj 'I
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lower then that of the F-side), then, if these surfaces separate

E, the value of the game will be constant in each component and

equal to the of H on ! therein. We assume that for each component

of 9, except possibly E", the game will terminate.

Proof: If S is one of these surface we can imbed it in a

family of semipermeable surfaces whose union is a thin layer con-

taining S. We define a function Vl(x) over the layer constant on

each surface, of class C1 , and decreasing in the P-direction.

This construction amounts to a problem in partial differential

equations and its solution is known to exist. If the reader de-

mands an explicit construction we can easily infer one from our

solution techniques to be explained later.

We reason about this layer Just the way we did about F' in

the preceding proof. We find, say, that if x is on the P-side

of S, say at a "distance" C from S, by playing a suitable K-strategy

P can keep x from crossing S.

5. The Path Equations

We work with integral payoffs, the other species being handled

by suppressing G.

Being confronted with a particular problem let us write (2)

and ascertain the maximizing * and minimizing ý as functions of

the xi and V1 . Let them be

* We will henceforth write V. in place of Vxi. Vx will stand

for the vector {Vd} (- grad V).
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T (5), iX f ?(XVX)

If there is a choice involved in (5), select f, W to be continuous

functions of their 2n arguments insofar as it is possible. (ihe

last clause generally acquires a definite meaning in a particular

example.) Substitute (5) into (2):

(6) 2'. Vi(x)f!(x,f,f) + G(x,T,f) o 0
I

We have now a true partial differential equation for V in

(6). It also shall be referred to as the main equation.

We differentiate (6) with respect to each xk now thinking

of V as a function of x. Doing so in accordance with the rules

of elementary calculus, we examine the components as they arise.

First we have

(7)iE Vx x fI

which can also be written

(8) z(Vk)x "i -k

that is, the time derivative of Vk over a direct optimal path.

Next we have

(9) 2 Vfik + Gk
i

*We are not really overworking these symbols. When V becomes

known as a function of x and so substituted in (5), it is clear

that we will have our old f, I.
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where f 4 k(X,Uv) -j(x,uv) and Gk = hen we encounter
k k

(10) 
d I- - ( vrifa)

Each is supposed subject to constant bounds such as (10)

of II. The minimizing j occurs either interior to the constraining

interval or at an endpoint. If the former, the -SL ( ) term of

C)j

(10) is 0 because of the minimizing property of f; if the latter,

the 9 is 0 as is constant. in either case then (10) vanishes.

S[he same is true of the remaining terms devolving on the *i. We

conclude

S (n) Vk -I--v , -k(xf(XVx). tf(x'v)) + Gk(xt(x,V ), f(xvx)).

Rewriting the K.E. , slightly specialized,

(12) Tk(lfxx'vx), lf(x'Vx))

This set (11), (12) of 2n ordinary differential equations in

the 2n unknowns Xk, Vk shall be called the path equations. It is

not necessary to presuppose the existence of second partials of V

such as appear in (7) and (8). Actually (ii), (12) are the charac-

teristic equations of (6) (slightly special in that the terms (10)

are nullified). Solutions of (6) can be built from integrals of

(11), (12) in the standard manner, a procedure which we shall

* We shall use such obvious abbreviations henceforth.

** See, for example, Courant-Hilbert, Methoden der Mathematische

Physik, T.II.

!H ll ",.!! _ _ _ __!! ! ii ! !. .. .. .... .... ......
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shortly adaptL tLc cur purposes.

6. The 3etrogression Principle

When solving a game we reverse time; we start at e and work

backwards into E. The motivation can be easily understood if the

game is quantized.

Let us replace the K.E. by approximating difference equa-

tions. The exact manner is not critical for our present ends;

we'll settle for any reasonable discrete facsimile. Consider

starting x so near ! that it can be reached in one move by each

player. What we have here is a one move discrete game; the navi-

gation variables are chosen as the optimal strategies for it.

This settles the value of the game in a certain thin part $1 of

Ebcrdering C. Next we similarly investigate the starting points

from which i can be reached after one move each by the players.

Inasmuch as values at the end of the composite move are known,

we again can formulate matters as a one-move game. (What we are

doing here is applying the tenet of transition; compare the first

proof of the main equation in Section 2.) Thus the value becomes

known in a second layer L2 bordering E1 We proceed thus, filling

e.

The value of the game is thus determined by a chain of causes

and consequences that proceeds counterchronologically from C.
dx

Accordingly, we let 'E- -t and use the syml.ol 9 for ,8

that --. For reference, we rewrite the F.E.:
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* (13) f

(14) k= fk(x'') "

7. The Solution in the Small

The surface C furnishes a natural seat of initial conditions

for these retrogressive equations. But an important detail calls

for attention first.

Ccnsider a position very near C. One or the other player

may be able to force or deter an imminent termination despite

any opposition from his opponent. Let V= ,..., be vector

normal to C from point x on C and extending into U. If, say,

* (15) mim xY VI If(x'fif'•) > 0

then E can prevent immediate termination from a position sufficiently

near x. If (15) holds with the inequality reversed, P can compel

immediate termination.

There is the question of whether a player will benefit from

the exercise of such power. Sometimes the answer is obvious. We

cite the case of termination time payoff; clearly E will defer

termination whenever he can. But in other instances E may see

that avoidance of the frying pan now will only lead to the fire

later. We leave the intricacies of such questi.ns to individual

i* Por terminal paycff games, we merely suppres:; the G.
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7cases. But we must crys9tallize one ,-oncept.

The above situation can imply that only a certain part of

will be effective under optimal play. We call it the useable

part. It is the residue of e when we remove the -ortions where

one player can - and profitably can - forestall termination from

nearby points.

Now we formulate the initial conditions for (13)l (14). Let

(16) x M hi sl,...,sn -1)

be a parametric representation of •. On C, V is known. Let it be

V(s). If the payoff is terminal, V(s) = H; if integral, V(s) - 0.

We need to know the values of the Vi on C. We have

(17) V (s) Y , V, i =l,...,n-l)

which are n-l equations for the n unknowns V The remaining

equation is the main equation (6). We need only solve this sys-

tem for the U.P. of C. Sometimes a double solution will appear.

The reason is that there is nothing in our analysis to distinguish

the two sides of C. It is not hard to do so by other means and

then discard the solution not pertaining to C.

Thus the values of x and V Iill be known on the U.P. of

C. They are to be employed ?s initial values in integrating (13),

(14). The solutions furnish (reversed) paths x,(,,sl,...,Sn 1 )

extending from the points s of (! into £ Should they fill

univalently (exactly one path through each point) the game is

virtually solved. Thi elements of the sciution can be obtained t
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by rouLine calculatiorn and ti.e verification trneorem will s.,ow it,

is correct.

If LT is not so filled, we cai still expect to obtain a solu-

tion in part of E. It will be the first step of tthe solution in

t•.e large. As tne later portions of Lie solution are constructed,

we may find ourselves repeating the w;,ole procedure with new sur-

faces playing the role here allotted to C.

Although we wish to segregate the in-the--large phases to

later pDragraphs, it will be instructive to mention one simple

type of singular s,rface now. Suppose the functions ', C of (5)

are not continuous; but, for example, f has a simple discontinuity

when a certain function u(x,Vx) changes sign. On C we will know

te sign of u and can construct the paths accordingly. From these

solutions of (13) and (14) we will know the value of u along a

path. Let us say that, for each s (that is, path) there occurs a

value of C where u ceases to have the favorable sign, and all Such

points together constitute a surface V in E. Thus our solution

construction is halted att.

But U'may well be a transition surface, thaL is one crossed

by the optimal paths but on which at least one of the optimal tactics
*

is discontinuous. [Vo find out, we need but proceed with the con-

struction. We use Zlas a new seat of initial conditions and on its

far side solve the path equations anew. These initial values of

Xi, Vx are of course obtained from the earlier paths, but we uti-

lize for f the new value ascertained fromr the changed sign of u.

* For an instance see Example T of 11.

* "S,
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jte next chapter will consist of various examples that can

be handled with our present state of knowledge.
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